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Executive Summary 

California’s regulations on greenhouse gas emissions have led to increased adoption of Battery Electric 

Vehicles (BEVs) in the state. However, range anxiety remains a challenge for BEV drivers. To address this 

issue, accurately predicting BEV charging behavior and informing drivers when they need to charge is 

crucial. This study aims to develop a prediction framework based on a Bidirectional Long Short-Term 

Memory Network (BLSTM) model to suggest when BEV drivers should charge their vehicles. The BLSTM 

model will be trained using a robust dataset of trips and charges from a subset of the eVMT dataset collected 

between 2015 and 2020. By providing essential information, the BLSTM model can adapt to changes in 

driving and charging patterns. This study aims to provide a more accurate and precise method of predicting 

charging events than conventional machine learning models. Our results show that implementing our model 

could reduce unnecessary charging by 15-22%. 
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1. Motivation and Background 

Battery electric vehicles (BEVs) offer a range of benefits, including reducing carbon emissions, dependence 

on fossil fuels, and local air pollution. As the popularity of BEVs continues to grow, drivers face new 

challenges, such as limited battery range and the availability of charging infrastructure. These challenges can 

cause anxiety and stress for drivers, who may be uncertain about reaching their destination without running 

out of battery. Accurately predicting when drivers need to charge their vehicles based on their historical data 

and estimating when they can avoid unnecessary charging session has become increasingly important in 

addressing these challenges. Such predictions can help drivers feel more confident during their trips, increase 

trust in the technology, and potentially accelerate the adoption of BEVs [1], [2].   

Auto manufacturers are actively developing algorithms for predicting charging behavior in electric vehicles 

to provide real-time information to drivers on when and where to charge their vehicles during their daily 

trips. The objective of this development is to mitigate range anxiety associated with BEVs. However, 

detecting any changes in trip and charging behavior is crucial to ensure the accuracy and precision of the 

prediction process. The prediction of charging behavior is a complex and multifaceted process as it involves 

human behavior, which is more challenging to forecast than other phenomena such as electricity prices and 

load demand. Therefore, the development of algorithms that can accurately predict charging behavior is 

essential to ensure the widespread adoption of BEVs and enhance the confidence of drivers in this technology. 

In the context of addressing the challenges associated with BEVs, timeseries forecasting plays a crucial role 

in predicting the behavior of trip-related variables, including arrival time, destination, and charging behavior 

[3]. Various statistical and machine learning methods have been developed over the years for predicting 

charging behavior in BEVs, including linear regression, autoregressive integrated moving average (ARIMA), 

support vector regression (SVR), and artificial neural networks (ANN). Accurate prediction of charging 

behavior can lead to better utilization of charging infrastructure, reduced range anxiety, and improved battery 

health of BEVs [4]–[6]. 

Statistical methods are often limited by their predefined structure, which can lead to deficiencies in the 

resulting model. For example, Autoregressive Integrated Moving Average (ARIMA) is a popular statistical 
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method for time series forecasting. ARIMA models capture patterns and dependencies in the data by 

combining autoregressive (AR), integrated (I), and moving average (MA) components. While ARIMA has 

been successful in forecasting behaviors of timeseries, it struggles to accurately capture sharp spikes [7]. To 

overcome this limitation, researchers have recently combined statistical methods with other techniques, such 

as the wavelet transform function. This function can decompose timeseries data into different frequency 

subseries and has been used in a hybrid approach with the autoregressive moving average (ARMA) model 

for short-term wind speed forecasting, resulting in improved forecasts for wind speed profiles with high 

fluctuations [8]. 

Artificial intelligence-based approaches, constructed using data engineering and machine learning 

techniques, are widely employed in various fields [9]. Conventional neural networks (C-NNs) with low 

hidden layers are a popular artificial intelligence method. To improve their performance, Rafiei et al. 

employed the Morlet wavelet function as the activation function of the hidden layers [10]. Support vector 

machines (SVMs) are another type of machine learning method that is commonly used in short-term 

forecasting, implemented using different kernel functions (e.g., linear, Gaussian) that map data into a new 

space [11]. Despite their advantages and disadvantages, these methods do not perform well when handling 

high-dimensional data. 

Modern transportation systems often face big data problems, and to handle this large volume of data, deep 

learning approaches are the best solution [12]. In deep learning approaches, multiple processing layers are 

considered, which allows them to accurately extract the main features of the data with multiple levels of 

abstractions [13]. Deep learning, which utilizes neural networks with more hidden layers assembled through 

vigorous training procedures, has become a widely used technology in many research fields. Various studies 

have employed deep learning concepts in different forecasting fields, such as electricity price forecasting 

[14], load demand forecasting [15], wind speed forecasting [16], and more. 

One particularly promising type of neural network is the long short-term memory (LSTM) network, which 

is a type of recurrent neural network (R-NN) capable of capturing long-term dependencies and complex 

patterns in time series data. LSTM has shown impressive results in a variety of timeseries forecasting tasks, 

including energy demand, stock prices, and weather data. Other studies have presented the LSTM for load 

demand and air quality forecasting [17], [18], respectively, showing the acceptable performance of deep 

LSTM in short-term forecasting tasks. Although some one-directional LSTM methods have been proposed, 

such as [18]–[20], they often produce errors in the results since they solely rely on memory in one direction. 

To overcome this issue, this article employs the bidirectional LSTM (BLSTM) method, which utilizes both 

past and future hidden layers data by means of two directional memories (feedforward and feedback loops). 

This approach enables the proposed forecasting method to efficiently extract all the hidden layers features, 

significantly enhancing the accuracy of the forecasting results. Table I provides a brief comparison between 

the benchmark forecasting methods. 

Table 1 benchmark forecasting methods comparison 
Methods Advantages Disadvantages 

Statistical 

Methods 

(ARMA, 

ARIMA) 

Low computation time [15] Cannot follow the sharp spikes accurately [7], [8] 

Suitable for short term forecasting [7] Cannot analyze complex nonlinear patters [21] 

Well performance in profiles with low fluctuation [22] Model identification is difficult [21] 

No need for large training data [21] Not suitable for long term prediction [23] 

SVM 

Without training difficulties like overfitting, and saturation [24] Low ability in feature extraction for large dimension data set [23] 

Well performance in classification task [25] High computational burden for large data set [19] 

Suitable for short term and long term forecasting [11], [21] Lack of strong memory unit [21] 

C-NN 

Good performance for handling simple non-linear problems[9] Without memory unit [26] 

Feature extraction ability [15] Gradient vanishing problem[16] 

Implementing in classification task [27] Overfitting problems during training [11], [21] 

R-NN 

Equipped with memory by recurrent weights [14] Low ability in feature extraction for large dimension data set[26] 

Modeling temporal dependencies ability [14], [23] Gradient vanishing problem[28] 

Good performance for handling simple nonlinear problems [14] Convergence and exploding gradients problems [17] 

Feature extraction ability [1] 

LSTM 

Equipped with remarkable memory and operation gates [17], [20] Error accumulation problem [29], [30] 

Good performance in challenging and complex profiles [18] Insufficient usage of temporal features [31], [32] 

Do not have the gradient vanishing problem [29] Complex training procedure [31] 

High feature extraction ability [33] 

This paper proposes a stochastic model to aid BEV drivers in making decisions about when to charge their 

vehicles. By accurately predicting charging events and the next destination location, the model can help 

drivers avoid unnecessary charging stops and overcharging, which can damage the battery and reduce its 

lifespan. Unlike deterministic approaches that produce the same results for a particular set of inputs, the 

stochastic model accounts for certain levels of unpredictability or randomness in the data. 

The model employs a BLSTM network that is trained using trip data such as GPS route, SOC, and time of 

day. The BLSTM model is integrated into the stochastic model, which predicts the likelihood of charging at 
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the destination in three levels and next destination locations for individual BEV drivers based on their 

vehicle's historical data. This provides drivers with the necessary information to decide when to charge their 

vehicles. The proposed stochastic model represents a significant advancement in the field of BEV charging 

prediction and has the potential to increase the convenience and reliability of BEVs for drivers. 

To illustrate the benefits of the proposed stochastic model, consider the scenario where a BEV with a SOC 

lower than the charging threshold stops at a location with public chargers. Deterministic approaches would 

recommend charging the vehicle at the public station, which can be costly. However, the next destination of 

the driver could be their home or workplace, where charging is cheaper and better for the battery lifespan. In 

this case, a stochastic model that utilizes historical data can assist the driver in making an optimal decision 

and avoiding unnecessary charging stops. This can help BEV drivers make informed decisions about when 

and where to charge their vehicles, leading to cost savings and improved battery lifespan.  

Due to a lack of real-world BEV data, many researchers have used internal combustion engine data as a 

substitute [34] to study charging behavior, which could lead to less accurate results. Therefore, this study 

employs the real-world BEV trip and charging dataset to train the BLSTM model and better understand 

individual charging behaviors. By incorporating current destination and arrival time prediction, our proposed 

methodology significantly improves the accuracy of predicting charging events and next destination. 

In addition to predicting charging events and assisting drivers in decision-making, the proposed stochastic 

model can detect and adapt to changes in travel and charging patterns. This dynamic nature of the model 

allows it to learn from new data as it becomes available. For example, if a BEV driver changes their typical 

travel pattern or charging behavior, the model can identify such changes and adjust its predictions 

accordingly. This adaptability ensures that the model remains effective and accurate over time, even as 

driving patterns and charging infrastructure evolve. This is particularly important given the rapid 

development of BEV technology and the growing popularity of electric vehicles. By continually adjusting 

its training procedure based on new data, the model can provide drivers with the most up-to-date and accurate 

predictions of when they need to charge their BEVs. 

This study is structured as follows: Section 2 introduces the proposed method, which consists of various 

forecasting units. Section 3 outlines the data description employed in the study. Sections 4 and 5 present the 

forecasting results and examine the impact of the BLSTM. Finally, Section 6 concludes the article. 

2. Proposed Methodology Framework  

The objective of this research paper is to develop a predictive neural network-based model that can alleviate 

the range anxiety associated with BEVs and avoid unnecessary charging session by accurately forecasting 

charging events and next destinations of drivers during each trip. This will enable the estimation of whether 

drivers can relocate their charging sessions to their homes rather than public chargers based on their historical 

data. By doing so, drivers will have the necessary information to make informed decisions about when and 

where to charge their BEVs.  

2.1 BLSTM Network 

The R-NN is the improved form of C-NNs, which uses the temporal information of input data by adding the 

connections between output and hidden layers. In fact, R-NNs have a memory unit and can use previous 

output or hidden layer data to predict new data, leading to better time-series forecasting. However, they can 

struggle with the gradient vanishing problem during training, which can hinder learning. To address this, 

LSTM networks [28] were introduced as an elaborated version of R-NNs, which have gates that allow for 

better handling of long sequences of data. Figure 1 shows the architecture of LSTM networks. LSTMs are 

better than traditional R-NN at handling the problem of vanishing gradients, which can happen when working 

with long sequences of data. This problem occurs when the gradients in the backpropagation algorithm 

become too small to be useful, which can stop the network from learning. LSTMs have different gates that 

distinguish them from R-NNs and make them a more powerful memory unit. There are three main gates in 

each LSTM network: the input gate, which controls how much of the new input is added to the memory cell; 

the forget gate, which controls how much of the previous state is forgotten; and the output gate, which 

controls how much of the current state is sent to the next layer in the network. 

The gates in the LSTM network are controlled by activation functions, which can either be sigmoid or 

hyperbolic tangent functions. The sigmoid function produces output values between 0 and 1, which are used 

to control the gates. On the other hand, the hyperbolic tangent function produces output values between -1 

and 1, which are used to update the state of the memory cell. These gates allow the network to selectively 

retain or discard specific information from the previous time steps. The gates are designed to manage the 

flow of information into and out of the memory cell, which is the essential part of the LSTM architecture. 

The memory cell stores and processes the input data sequence, and its state is updated at each time step. 
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The proposed method utilizes deep learning techniques and consists of several stacked LSTM networks for 

the forecasting module. The input data for each network is taken from the output of the same network at the 

previous time step and the output of the previous network at the current time step. The input gate stores 

information from the current and previous time steps, while the forget gate discards unnecessary information 

from the memory cell, and the output gate retrieves useful information. Because of the stacked configuration, 

the features are propagated among the networks during the training process, allowing the deep LSTM 

networks to effectively learn complex and unpredictable phenomena. The equations that define the behavior 

of the LSTM network can be described as follows: 

𝑖𝑡 =  𝜎 (𝑊𝑖𝑡𝑆𝑡
(𝑙−1)

+ 𝑊ℎ𝑡𝑆(𝑡−1) + 𝑏𝑖) (1) 

𝑓𝑡 =  𝜎 (𝑊𝑖𝜑𝑆𝑡
(𝑙−1)

+ 𝑊ℎ𝜑𝑆(𝑡−1) + 𝑏𝑓) (2) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 tanh (𝑊𝑖𝛾𝑆𝑡
(𝑙−1)

+ 𝑊ℎ𝛾𝑆(𝑡−1) + 𝑏𝑐) (3) 

𝑂𝑡 =  𝜎 (𝑊𝑖𝑜𝑆𝑡
(𝑙−1)

+ 𝑊ℎ𝑜𝑆(𝑡−1) + 𝑏𝑜) (4) 

𝑆𝑡 = 𝑂𝑡 tanh(𝑐𝑡) (5) 

Here, the model parameters are defined as 𝑊𝑖𝑡, 𝑊𝑖𝜑, 𝑊𝑖𝛾 ∈  ℛ𝑟 ×𝑛ℎ  for input gates  𝑊ℎ𝑡, 𝑊ℎ𝜑, 𝑊ℎ𝛾 ∈

 ℛ𝑛ℎ ×𝑛ℎ  for hidden state and 𝑏𝑖, 𝑏𝑓 , 𝑏𝑐, 𝑏𝑜 ∈  ℛ1 ×𝑛ℎ   as bias variable. During the training process, these 

variables are adjusted using an optimization algorithm. 

To address the issue of neglecting future features in LSTM networks, this study employs BLSTM networks 

which process data bidirectionally [29]. The BLSTM network consists of two main hidden layers, each 

composed of stacked identical LSTM networks - one for the forward direction and one for the backward 

direction. This allows the network to incorporate information from both past and future time steps, making 

it suitable for forecasting multistep ahead data. The BLSTM network can store all useful previous and future 

features with high precision, making it a powerful solution. BLSTM networks can transfer information in 

two directions: from the past to the future and from the future to the past. BLSTM is a suitable approach for 

predicting multi-step data, where the output is used as input in future steps [35]. Additionally, the BLSTM 

network is more precise in predicting phenomena with high stochastic and intermittent behavior since it does 

not follow the recursive process, which feeds back the previous information in an iterative manner. This 

process led to error accumulation, which has been demonstrated in [30] and [32]. 

For a given time step t in the BLSTM network, the mini-batch input data is represented as 𝑋𝑡 ∈  ℛ𝑛 ×𝑟, and 

the forward and backward hidden states are assumed as �⃗⃗� 𝑡  ∈  ℛ𝑛 ×𝑛ℎ   and �⃗⃗⃖�𝑡  ∈  ℛ𝑛 ×𝑛ℎ, respectively. These 

two hidden states are then combined to form the hidden state 𝐻𝑡 ∈  ℛ𝑛 ×2𝑛ℎ , which consists of both forward 

and backward information. 

The output data 𝑂𝑓𝑛 ∈  ℛ𝑛 ×𝑛𝑜 is then computed using the following equation: 

�⃗⃗� 𝑡  =  tanh (𝑋𝑡𝑊𝑥ℎ
(𝑓)

 + �⃗⃗�  (𝑡−1))𝑊ℎℎ
(𝑓)

+ 𝑏ℎ
(𝑓)

  (6) 

�⃗⃗⃖�𝑡  =  tanh (𝑋𝑡𝑊𝑥ℎ
(𝑏)

 + �⃗⃗⃖�(𝑡−1))𝑊ℎℎ
(𝑏)

+ 𝑏ℎ
(𝑏)

 (7) 

𝑂𝑓𝑛 = 𝐻𝑡𝑊𝑜 + 𝑏𝑜 (8) 

Here, the model variable are defined as 𝑊𝑥ℎ
(𝑓)

∈  ℛ𝑟 ×𝑛ℎ, 𝑊ℎℎ
(𝑓)

∈  ℛ𝑛ℎ ×𝑛ℎ , 𝑏ℎ
(𝑓)

∈  ℛ1 ×𝑛ℎ  for forward 

processing and, 𝑊𝑥ℎ
(𝑏)

∈  ℛ𝑟 ×𝑛ℎ , 𝑊ℎℎ
(𝑏)

∈  ℛ𝑛ℎ  ×𝑛ℎ , 𝑏ℎ
(𝑏)

∈  ℛ1 ×𝑛ℎ  for backward processing. 

Table 2 provides a description of the variables, parameters, and sets that have been used in the equations. 
BLSTMs are effective in processing time-series data with complex non-linear relationships and temporal 

dependencies, particularly second-by-second trip logs found in BEV trip dataset [36]. Additionally, BLSTMs 

can extract critical features and can be used for classification tasks. This study aims to develop a BLSTM 

model that can predict trip arrival time and classify EV trips into various destination categories, such as home 

and work. The model will also calculate the probability of charging at each destination and probability of 

next destination, while considering other travel parameters. Unlike previous studies, this model will be 

configured using empirical data from 5 BEVs over the course of one year in the eVMT project dataset [37].  
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Figure 1- LSTM cell 

Table 2- Nomenclature 

Category  Definition 

 𝑖𝑡 Data vector of input gate at time t. 𝑊𝑖𝑡 Weight vector for input of current state input gate 

V
a
ri

a
b
le

s 

𝑖ℎ,𝑡 Desired output in iteration s for class c 𝑊𝑖𝜑 Weight vector for input of current state forget gate 

𝑏𝑐  Bias vector for cell block. 𝑊𝑖𝛾 Weight vector for input of current state cell block. 

𝑏𝑓 Bias vector for forget gate. 𝑊𝑖𝑜 Weight vector for input of current state output gate. 

𝑏ℎ
(𝑓)

 Bias vector for forward hidden layer. �⃗⃗� 𝑡 Hidden vector for forward layer at time t. 

𝑏ℎ
(𝑏)

 Bias vector for backward hidden layer. �⃗⃗⃖�𝑡 Hidden vector for backward layer at time t. 

𝑏𝑖  Bias vector for input gate. 𝑂𝑓𝑛 Output vector of the final layer 

𝑏𝑜 Bias vector for output gate. 𝑊𝑥ℎ
(𝑓)

 Weight vector of forward layer input data. 

𝑐𝑡 Data vector of cell block at time t. 𝑊ℎℎ
(𝑓)

 Weight vector of forward layer output data. 

𝑂𝑓𝑛 Total Sum of error in iteration s 𝑊𝑥ℎ
(𝑏)

 Weight vector of backward layer input data. 

𝑂𝑡 Total sum of error 𝑊ℎℎ
(𝑏)

 Weight vector of backward layer output data. 

𝑊ℎ𝑡 Output of neuron j in layer l in iteration s 𝑊𝑜 Weight vector of the output layer. 

𝑊ℎ𝛾 Weight vector for neuron j in layer l in iteration s 𝑋𝑡 Input data vector at time t. 

𝑂ℎ,𝑡 Activation function for neuron j in layer l in iteration s 

𝑆𝑡 Activation function input for neuron j in layer l in iteration s 

𝑊ℎ𝜙 Output of neuron j in layer l in iteration s for class c 

𝑊ℎ𝑜 Weight vector between sample i of the input layer and neuron j in hidden layer l in iteration s 

P
a
ra

m
et

er
s n  Total number of input data. 

𝑛ℎ Total number of hidden units. 

r Dimension of each input data sequence 

𝑛0 Total number of outputs. 

in
d
ex

 i Index of sample vector of each cluster. 

t Index of hidden layer sample 

l Index of hidden layer. 

2.2 Overall Structure of the Proposed Methodology 

This study is divided into three stages, as shown in Figure 2. First, the model's training, validation, and testing 

datasets are generated using the eVMT project's dataset. In the second stage, the BLSTM model is defined 

and configured using the training and validation data from the previous stage. Finally, a series of experiments 

are conducted on the defined models using the testing dataset from stage one to evaluate the BLSTM model.  

 
Figure 2 BLSTM Framework 

The study is structured into four stages for predicting drivers' next destination and charging behavior. First, 

the initial BLSTM model forecasts the trip's arrival time using historical data. Second, the predicted arrival 

time is combined with input variables from the previous model and fed into the second model, which predicts 

the trip's destination. Third, using the predicted arrival time and destination, the third BLSTM model predicts 

the charging behavior at the end of the trip. Finally, all the predicted data is combined with initial data to 
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predict the next trip destination location of drivers. Accurate next destination prediction is critical, as it 

empowers drivers to decide whether to charge their cars at current location or wait until the next stop to 

charge their car at a lower cost. The study results indicate that the model can converge on results within 3-5 

minutes of starting the trip. Figure 3 illustrates the prediction framework used in this study. 

 
Figure 3- Prediction model framework 

3. Case Study Definition 

3.1 Data Overview 

The models used in this research were configured using a subset of the eVMT project's dataset, which is a 

California-wide study spanning five years (2015-2020). The eVMT project aimed to gain insight into the 

driving and charging behaviors of Plug-in Electric Vehicles [37]. In this study, a subset of data from the 

Nissan Leaf, Chevy Bolt, and Tesla was utilized to train and test the BLSTM model. 

Table 3: BEV dataset [37] 
 

EV Type 
Number of 

Vehicles 

Number 

of Trips 

Total Miles 

Traveled 

Number of 

Charging 

Battery 

Electric 

Vehicles 

Nissan Leaf-24 3 4201 27,638 854 

Chevrolet Bolt 66 1 1582 10,486 325 

Tesla Model S-60_80 2 1610 29,753 450 

4. NUMERICAL RESULTS 

4.1 Forecasting Results 

The BLSTM networks used in this study were trained on earmarked datasets. We determined that 50 hidden 

layers were optimal for the BLSTM network by performing a grid search, where we experimented with 

various numbers of hidden layers and evaluated the performance of the model on the task at hand. It should 

be noted that the BLSTM network is more sensitive to the learning rate values than the LSTM network to 

prevent saturation during the training process. Therefore, the initial learning rates for the BLSTM network 

were set to 0.01 and 0.005, respectively [38]. To prevent overfitting and improve the stability of the proposed 

method, an L2 regularization term with a coefficient of 0.001 was implemented to prevent rapid and sharp 

changes in the weights during training [38]. Furthermore, a dropout layer with a probability of 0.5 was 

implemented to prevent co-adaptation of neurons, and a mini-batch gradient descent method was applied to 

reduce the variance of the updating parameters and achieve more stable convergence [38]. These measures 

are essential for deep learning-based networks. The maximum number of epochs for the training phase was 

determined through experimentation to be 30, based on the model's performance on the validation set. 

Additionally, we set the validation step to 10 to ensure the robustness of the proposed method. These values 

were selected by performing a grid search. Finally, a comprehensive comparison was made among various 

approaches for three different Nissan Leaf. Due to the time-consuming nature of the training process, this 

study focused on comparing three different neural network models using data from three Nissan Leaf 

vehicles. The primary objective was to identify the most effective model, which could then be generalized to 

the Tesla and Bolt vehicles. By selecting the best-performing model for the Nissan Leaf, we can ensure that 

our predictions for the other two vehicles are also reliable and accurate. 

I. Arrival Time 

Our study utilized a deep learning algorithm to predict the arrival time of three Nissan Leaf, which is an 

important factor in determining the charging behavior and accurately forecasting the next destination. We 

evaluated the performance of three neural network models, R-NN, LSTM, and BLSTM, using mean squared 

error (MSE) for the prediction results. The three models were trained and tested on Nissan LEAFs dataset to 

ensure a fair comparison. As shown in Figure 4, the BLSTM model outperformed the other models in 

predicting arrival time with the lowest MSE  where the Y axis represents the error in hours. This finding 
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suggests that the BLSTM network can be an effective method for accurately forecasting BEV arrival time 

and detecting anomalies in driver behavior. The ability to detect changes in driver behavior is valuable for 

adjusting the algorithm and retraining it based on new driving habits. 

 

  
a- Mean Squared Error - 1001-LEAF b- Mean Squared Error - 1003-LEAF 

 
c- Mean Squared Error - 1004-LEAF 

Figure 4- Arrival time prediction- Mean Squared Error. 

II. Destination 

In the second stage of our study, we aimed to predict the destination of each trip using a new deep learning 

network at the start of the trip. To improve the accuracy of our prediction, we utilized the output of the 

previous network along with the initial inputs, as the arrival time and destination are interrelated. Accurately 

predicting the destination is crucial for accurately predicting charging behavior and notifying drivers about 

when to charge their car. Therefore, improving the accuracy of destination prediction can significantly 

increase the likelihood of accurately predicting charging behavior. As shown in Figure 5, the BLSTM model 

outperformed the other models in predicting the destination with higher accuracy (ACC) and F1 score (F1). 

  
a- Destination Prediction - 1001-LEAF b- Destination Prediction - 1003-LEAF 

 
c- Destination Prediction - 1004-LEAF 

Figure 5- Destination Prediction Error Criteria 

 

III. Charging Behavior 

As illustrated in Figure 3, the third step of our algorithm utilizes the outputs of the previous two steps to 

predict the driver's charging behavior. In Figures 6a, 6b, and 6c, we compare the prediction accuracy (ACC) 

and F1 score (F1) for neural network-based model on three Nissan LEAF vehicles to identify the best 

stochastic model and configuration for predicting complex charging behaviors. We observed that for vehicle 
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1001, the accuracy and F1 score did not vary significantly different among different neural network models, 

as it does not exhibit complex charging behavior. However, for vehicles 1003 and 1004, which have more 

complex charging behaviors, the BLSTM model outperformed a better ability to extract features and predict 

charging behavior with higher accuracy.  

  
a- Charging Prediction - 1001-LEAF b- Charging Prediction - 1003-LEAF 

 
c- Charging Prediction - 1004-LEAF 

Figure 6- Charging Prediction Error Criteria  

IV. Next Destination Prediction 

In the final step of our algorithm, we use the outputs of the previous three steps to predict the driver's next 

destination. The model utilizes all input information, including the outputs of the previous three steps, to 

make this prediction. Figure 7 compares the performance of three different neural network-based algorithms 

in predicting the next destination. We observed that for vehicle 1001, the accuracy (ACC) and F1 score (F1) 

did not significantly differ among the different neural network models, as it does not exhibit a complex 

driving pattern involving visits to different locations. However, for vehicles 1003 and 1004, which have more 

complex driving patterns, the BLSTM model outperformed other models by showing a better ability to extract 

features and predict the next destination with higher accuracy. 

  
a- Destination Prediction - 1001-LEAF b- Destination Prediction - 1003-LEAF 

 
c- Destination Prediction - 1004-LEAF 

Figure 7- Destination Prediction Error Criteria 
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5. Discussion 

The primary aim of this study is to develop an effective tool that can help BEV drivers to avoid unnecessary 

charging at public stations and instead charge their vehicles at home, where the cost of energy per unit is 

usually lower. Also, lower power rate is better for battery health because it reduces the stress on the battery's 

internal chemistry and prolongs its lifespan. When a battery is charged at a high rate, it generates more heat 

and can cause degradation of the battery's internal components, leading to a reduction in capacity and 

performance over time. In contrast, charging at a lower rate allows for a slower and more controlled transfer 

of energy, reducing the risk of damage and maintaining the battery's health and longevity. Therefore, BEV 

owners should aim to charge their vehicles at a lower rate to maximize the lifespan of their batteries. 

As depicted in Figure 8, our analysis found that, on average, drivers in our case study initiated their charging 

session with a SOC above 40% in other and workplace charging stations. However, Figure 9 illustrates that 

most of these drivers usually head home after charging, where the cost of electricity is relatively cheaper than 

at public charging stations. 

To achieve our research goal, we adopted a stochastic machine learning-based model to predict drivers' 

behavior based on their historical data. While on a trip, the model guides drivers on whether they need to 

charge their vehicle at their current destination or move their charging session to their next destination, 

thereby helping them avoid unnecessary charging that can damage the battery's lifespan and prove costly in 

the long run. To accomplish this, the model predicts the charging behavior and destination of the next trip to 

estimate whether drivers can reach their destination with a state of charge above 20%, which is the minimum 

rate to avoid any damage to the battery health [39].  

 
Figure 8: Vehicle Trips and Charging Events 

 
Figure 9: Next Destination After Charging 

The results of our study demonstrate that the BLSTM prediction model can be an effective tool for reducing 

unnecessary charging by accurately predicting the next destination and current charging behavior of BEV 

drivers. Although there is always a risk of incorrect predictions due to errors during training, the low number 

of incorrect predictions compared to the correct ones indicates that our model can assist drivers in making 

informed decisions and avoid unnecessary charging. Our model can help mitigate these issues by suggesting 

when drivers can move their charging session to their home, where the cost of electricity is generally lower 

than at public charging stations. 

As shown in Figure 10, the potential value of the BLSTM charging and destination framework is significant. 

For 5 out of 6 vehicles in our case study, our model identified that 15% to 22% of their charging session was 

unnecessary and could be avoided by moving the charging session to their home. This indicates that the 

model has the potential to significantly reduce the cost of charging for BEV drivers and prolong the battery 

life of their vehicles. The presented BLSTM charging, and destination prediction framework provides a 

reliable solution for addressing the issue of unnecessary charging and can be beneficial for both BEV drivers 
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and the environment. However, Figure 10 reveals that the BLSTM model employed in this study did not have 

a significant impact on the charging behavior of vehicle number 1001. This can be attributed to the fact that 

the driver predominantly charges the vehicle at home. As a result, the prediction tool was unable to assist the 

driver by suggesting that they move their charging sessions from public or workplace chargers to their home 

charger. 

 
Figure 10: BLSTM Model Suggestion 

6. Conclusion 

In recent years, artificial intelligence has had a significant impact on many aspects of human life by providing 

useful information to assist with daily routines. Concurrently, many countries have developed policies to 

promote the use of BEVs as part of their efforts to reduce greenhouse gas emissions. However, the adoption 

of BEVs presents a new challenge such as range anxiety. This study aimed to develop a machine learning-

based model to assist BEV drivers in making informed decisions about charging their vehicles and avoiding 

unnecessary charging sessions. 

Our study evaluated the effectiveness of R-NN, LSTM, and BLSTM neural network-based models in 

predicting the charging behavior of BEVs. Our results show that the BLSTM models outperformed the other 

models by accurately predicting complex charging behaviors in a shorter time with a smaller sample size. 

Our prediction framework, which predicts charging behavior and the next destination of the drivers' trip, 

estimates the amount of SOC required for the next trip if the driver does not charge at the current location 

and moves the charging session to the next location if it is home. 

The results of our study show that implementing this framework can reduce public charging sessions by 15-

22%, resulting in cost savings for BEV owners and potentially extending battery lifespan due to lower power 

transfer rates from the grid to the vehicle. While our current model can predict the next destination, future 

work should consider estimating charging needs for the entire day rather than just the next trip. 

In conclusion, our study highlights the importance of developing accurate and efficient charging behavior 

prediction systems to make BEVs more practical and appealing to consumers. By addressing the challenges 

of predicting difficult charging behaviors and exploring new prediction methods, we can advance the field of 

BEV charging prediction and help accelerate the transition to a more sustainable transportation system.  
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